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Abstract
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Petkovic5, Diego Reforgiato Recupero6, Ehud Reiter3, Daniele 
Riboni6, and Raymond Sterling1.

Abstract Health self-management and home care are very 
important for future healthcare. The trend is driven by societal 
changes and the developments in technology. In this position 
paper, we give an overview of trends and opportunities in 
personal health services based on interactive cognitive 
interfaces and spoken dialog systems.
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Many chronic health conditions such as diabetes, obesity, 
substance abuse, and sleep disorders, can be helped by a 
lifestyle change. Passive health self-management services 
with a watch and a tracking app do not seem to be very 
effective for lifestyle change [12, 35]. Health counseling, on 
the other hand, is known to work [32, 22]. However, health 
counseling is expensive and do not scale well in a world with 
a growing deficit of healthcare workers [6]. One solution for 
personal health selfmanagement is automated counseling, 
AC. After 50 years of research, see, e.g., [5], the recent 
progress in dialog system technologies is finally making AC a 
realistic option. AC has also recently been shown to be 
effective in a controlled trial [13].

We believe that collaborative care management with a 
conversational agent will be central for future health 
self-management. The key element is the engaging dialogue 
which makes the user reflect own lifestyle choices and 
barriers, and find opportunities and motivation for a change 
[29]. This requires advances in sensing technology, 
model-based cognitive interaction technologies, and 
embodiments. Figure 1 lists enabling technologies that we 
believe are central for conversational interfaces in health 
self-management, but where also breakthroughs are 
needed.
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Fig. 1 Challenges in conversations technologies and applications for health self-management.
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Users may have a very different lifestyle and requirements, 
which requires highly adaptive solutions. In NLU, NLG, and 
dialog management [3, 18] there is a clear progression 
towards deep E2E solutions which provide flexibility over 
conventional rule-based systems [9, 19, 26]. However, in 
healthcare, it is very important to be able to combine 
data-driven learning with validated clinical knowledge [31], 
which is a challenge for many deep learning solutions. The 
system must understand what the words of the user mean in 
the desired clinical and therapeutic setting [8, 7], and how 
the output is expected to influence the user, and the goals of 
the counseling.
In order to lead a meaningful conversation about the lifestyle 
of the user, the system has to have a good understanding of 
it. This requires data-driven techniques for modeling of the 
lifestyle [21, 36], and situational intelligence, which can put 
the conversation in the right context [2]. In particular, 
wearable sensors and egocentric vision systems [23], 
together with cameras integrated into the dialog agent, 
seem to be necessary for human-level situational 
intelligence. Wearable computing has a long history [4, 28], it 
has become of more interest in the last years with the 
advancement of both hardware and software technologies 
[17]. The main applications of FPV systems in the context of 
assistive Computer Vision [25] is related to memory 
augmentation [1] and life logging [15, 20, 30]. Recent studies
have also considered the FPV paradigm to recognize 
important objects observed by user [24] and to understand or 
to anticipate the actions and activities performed by the user 
[10, 14, 33, 34] or the next object to which the user is going to 
interact with [16]. A robotic embodiment for the 
conversational agent is another way to extend the 
capabilities of the agent. Robotic embodiments have proven 
to attract more interest and engagement from patients 
rather than other technologies. Different studies [27, 11] 
reported that both old and young adults preferred to interact 
with embodied robot over the non-embodied computer 
screen, and thus carebots may offer benefits over 
smartphones or tablets in delivering healthcare.
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Eight industrial doctorate research fellowships are offered 
within the framework of PHILHUMANS.

1. Computational intelligence for behavior understanding
2. A conversational agent as a digital counsellor for 
automated therapy
3. Deep program induction for personal health services
4. NLP, semantics and setiment analysis from text
5. Scene understanding and interaction anticipation from first 
person vision
6. Face analysis and body language understanding from 
egocentric cameras
7. Natural language generation for personalised health 
communication
8. Business economics and robotics
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